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Abstract 

This study examines relations between high frequency trading, order flow toxicity, stock price 

volatility during normal and high order flow toxicity periods, and predictability of changes in high 

frequency traders’ liquidity supply and demand. By employing Volume-synchronized probability 

of informed trading (VPIN) flow toxicity metric, we find a negative relation between high 

frequency trading and order flow toxicity. Our results also show that VPIN can be a good predictor 

of high frequency traders’ liquidity supply and demand changes. Finally, we find that high 

frequency traders’ impacts on stock price variance are not uniform and change with order flow 

toxicity levels of markets and stock volume. 
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The Role of HFTs in Order Flow Toxicity and Stock Price Variance, 

 And Predicting Changes in HFTs’ Liquidity Provisions. 

 

Introduction 

High frequency trading is a subset of algorithmic trading that aims to profit from trading 

at very high speeds. The 26 high frequency trading firms, identified in the NASDAQ high 

frequency dataset (which includes 120 stocks) participate in 74% of all trades that execute on 

NASDAQ (Brogaard, 2010). The upper boundary for estimated annual profits of aggressive high 

frequency traders (HFTs) on the US market is around $21 billion (Kearns et al., 2010). Theoretical 

work implies that HFTs may be harmful or beneficial for market quality depending on certain 

conditions.1 However, empirical studies generally find that HFTs appear to be mostly beneficial 

for markets.2 

Our study answers three questions related to HFTs. First, how do HFTs’ liquidity supply 

and demand affect order flow toxicity in equity markets? Second, can we predict periods in which 

HFTs are dropping out of the market or decreasing their liquidity provisions? Third, how do HFTs 

affect stock price variance during normal and high order flow toxicity periods?  

Two empirical studies, Brogaard et al. (2014) and Carrion (2013), are related to our study. 

Brogaard et al. find that while HFTs’ liquidity demanding orders increase price efficiency their 

liquidity supplying orders may be adversely selected. Carrion finds that HFTs provide liquidity 

when spreads are wider and take liquidity when spreads are tighter. Carrion’s results about HFTs’ 

adverse selection costs to other liquidity providers are mixed. While examining possible high 

                                                           
1 Cartea and Penalva (2012), Jarrow and Protter (2012) and Biais, Foucault, and Moinas (2015) develop theoretical 

models to describe the impacts of HFTs. 
2 Brogaard (2010), Kearns, Kulesza, and Nevmyvaka (2010), Menkveld (2013), Kirilenko, Kyle, Samadi, and Tuzun 

(2012), Brogaard, Hendershott, and Riordan (2014) and Carrion (2013) empirically examine HFTs from different 

perspectives.  
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frequency trading generated adverse selection, Brogaard et al. and Carrion focus on HFTs’ impact 

on the permanent price change component.  

As opposed to Brogaard et al. (2014) and Carrion (2013), our first question approaches 

HFTs’ impacts on market liquidity with a different framework; order flow toxicity, measured with 

VPIN. According to Easley et al. (2011), when there is a lot of information-based trades, VPIN 

will be high. During high VPIN periods market makers will be on the wrong side of the market, 

and they will accumulate or lose inventory on the wrong side of the market. Accumulation of losses 

by market makers may force them to leave the market. Thus, order flow toxicity may harm market 

liquidity.  

Instead of focusing on price changes over a clock time interval, our approach, measuring 

toxicity with VPIN, focuses on volume, order imbalances, and the number of trades over a trade 

time interval. The importance of our approach is supported with findings of Easley and O’Hara 

(1992), Jones, Kaul and Lipson (1994) and Blume, Easley and O’Hara (1994). Research shows 

that the number of trades is an important signal of information flow, and the sequence of trades 

provides additional information that is not conveyed by individual transactions (Easley and 

O’Hara, 1992), the frequency of trades contains information regarding trading (Jones, Kaul and 

Lipson, 1984), and volume provides information about the quality of traders’ information (Blume, 

Easley and O’Hara, 1994). In other words, VPIN is designed to capture volume information rather 

than price information (Easley et al., 2011). Thus, different from previous studies our approach 

examines the impact of HFTs on market liquidity by focusing on volume information.  

Another uniqueness of our approach is to employ a trade time clock rather than clock time. 

While examining HFTs’ impact on market liquidity a trade time clock can be more appropriate. 

Specifically, Clark (1973) introduces the idea that clock time may not be appropriate for measuring 
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time in financial markets. Consistently, Ane and Geman (2000) find that in high frequency world, 

trade time rather than clock time is a more appropriate measure to use in sampling information 

sets. Particularly, Ane and Geman find that the cumulative number of trades is an appropriate 

stochastic clock for generating virtually perfect normality in returns. Also, Easley et al. (2012) 

show that volume time reduces the impact of volatility clustering, and the distribution of price 

changes calculated in volume time is closer to a normal distribution and is less heteroscedastic 

than price changes calculated in clock time. 

Second, we study the predictability of periods in which high frequency liquidity providers 

change their liquidity supply and demand. Sudden changes in liquidity provisions can have 

significant impacts on market liquidity. For instance, Kirilenko et al. (2012) and Easley et al. 

(2011) find that the May 6, 2010 Flash Crash is a liquidity event in which some liquidity providers 

dropped out the market. Such liquidity events can have devastating implications for investors. So, 

predicting liquidity shocks is an important issue. To this end, we examine whether high VPIN 

levels can detect changes in HFTs’ liquidity supply and demand. 

Lastly, we examine the impact of HFTs on stock price variance. Similar to our study, 

Brogaard (2010) compares volatility in one minute intervals with and without HFT initiated trades 

and concludes that HFTs may decrease stock price variance. Our approach differs from Brogaard 

in two aspects. First, we employ a volume time clock rather than clock time.  The importance of 

focusing on volume time rather than clock time in a high frequency world is emphasized by the 

findings of Clark (1973), Ane and Geman (2000) and Easley et al. (2012).  Thus, by using a more 

relevant clock to calculate volatility, our study increases our understanding of the relation between 

HFTs and stock price variance. Second, we examine impact of HFTs on stock price variance during 

two different periods: normal and high order flow toxicity environments.  This analysis is 
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important because Kirilenko et al. (2012) find that HFTs did not start the Flash Crash, but HFT’s 

did exacerbated stock price volatility during the Flash Crash. Thus, HFTs’ impact on stock price 

variance may be different during normal times (as in Brogaard) than during high toxicity times (as 

in Kirilenko et al.). Kirilenko et al. analyze a single high toxicity event, whereas we examine the 

relation between HFTs and stock price variance during all high toxicity periods over the year 2009. 

Thus, we provide a more comprehensive analysis of HFTs’ impact on stock price variance in 

different order flow toxicity environments.  

Our main findings are as follows. The trades in which HFTs trade with other HFTs and 

non-HFTs are negatively associated with order flow toxicity. rades in which non-HFTs trade with 

each other are positively associated with order flow toxicity. These findings are robust across 

different volume samples. Our findings show that HFTs do not increase order flow toxicity, and 

trades of non-HFTs with other non-HFTs are the main sources of order flow toxicity during our 

sample period. We also find that VPIN can detect changes in HFTs’ market participation, liquidity 

supply and demand around 10 volume buckets in advance. Thus, market participants and regulators 

can track VPIN in real time and predict when high frequency liquidity suppliers will change their 

liquidity provisions. Lastly, HFTs’ relation to stock return volatility is not uniform, and depend on 

stock volume and toxicity level in the market. Specifically, during normal periods HFTs 

participation can decrease stock return variance in high and medium volume stocks but increase 

the volatility in low volume stocks. HFTs continue to decrease stock return volatility of high 

volume stocks even during the high toxicity periods. However, HFTs do not affect stock return 

variance of medium and low volume stocks during the high toxicity periods.  

 

2. VPIN as a measure of order flow toxicity  
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Volume-synchronized probability of informed trading (VPIN) is developed by Easley et 

al. (2012), and we follow their methods. Similar to our application, VPIN is used to measure order 

flow toxicity by Easley et al. (2011; 2012), Menkveld and Yueshan (2013), Bethel et al. (2012), 

Abad and Yague (2012), Wu et al. (2013) and Wei et al. (2013).       

Using S&P 500 futures data, Easley et al. (2011) employ VPIN to study toxicity around 

the May 6, 2010, Flash Crash, and find high levels of toxicity around the Flash Crash.  Menkveld 

and Yueshan (2013) present VPIN and the change in VPIN as toxicity measures in the Flash Crash. 

Bethel et al. (2012) find that VPIN gives strong signals ahead of the Flash Crash. Using E-mini 

S&P 500 futures and WTI crude oil futures from January 1, 2008 to June 6, 2011, Easley et al. 

(2012) report high levels of VPIN around the Flash Crash and the Fukushima nuclear crisis on 

March 14, 2011. Easley et al. (2012) conclude that high VPIN levels indicate order flow toxicity. 

Abad and Yague (2012) find that certain specifications of VPIN can proxy for adverse selection 

risk, and that VPIN can be a helpful device in Spanish financial markets. Wu et al. (2013) examine 

the performance of VPIN in predicting volatility events in 94 futures contracts from January 2007 

to July 2012, and conclude that VPIN is a strong predictor of liquidity-induced volatility. Using 

VPIN as a toxicity measure, Wei et al. (2013) find that VPIN affects quote imbalances and intraday 

price volatility of 30 stocks in Australian financial markets.  On the other hand, using E-mini S&P 

500 data from February 10, 2006 to March 22, 2011, Andersen and Bondarenko (2014b) find that 

after controlling for trading intensity and volatility, VPIN calculated with bulk volume 

classification has no additional predictive power of future volatility.  

We do not aim to resolve the conflicting results about VPIN’s predictive power for future 

volatility after controlling for certain factors in futures market. Consistent with the order flow 

toxicity literature, we use VPIN as a measure of HFT and non-HFT generated toxicity in equity 
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markets. Also, while VPIN estimations are sensitive to trade classification algorithms, our data 

indicate if the trade is a buy or sell. Thus, our calculations are free from biases caused by certain 

trade classification algorithms.  

3. Hypotheses development 

3.1 HFTs and order flow toxicity 

Theoretical work proposes that HFTs can benefit or harm market quality depending on 

certain conditions. Cartea and Penalva (2012) propose that HFTs can cause losses to both liquidity 

traders and market makers, increase price volatility and volume, but do not improve liquidity. 

Jarrow and Protter (2012) show that HFTs may increase market volatility and create their own 

profit opportunities at the expense of ordinary traders in a frictionless financial market. However, 

Biais, Foucault, and Moinas (2015) find that increases in the level of high frequency trading, up to 

a threshold level, may increase the probability that investors will find a trading counterparty and, 

thereby, increase trading volume and profits. On the other hand, high levels of high frequency 

trading can impose adverse selection costs on slow traders, and reduce volume, profits, and cause 

slow traders to drop out of the market. 

Empirically, Hendershott, Jones, and Menkveld (2011) and Hendershott and Riordan 

(2013) find that algorithmic trading improves liquidity in U.S. and Germany stock markets, 

respectively. Brogaard et al. (2014) find that HFTs play a significant role in information 

dissemination and price discovery. We reason that HFTs’ impact on price discovery may be 

beneficial to other liquidity providers, and lower order flow toxicity. Specifically, high information 

asymmetry between liquidity providers and informed traders generates losses for liquidity 

providers. HFTs speed up information incorporation into stock prices (as in Brogaard et al., 2014), 

thus possible information asymmetry between informed traders and liquidity providers will be 
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reduced faster. Due to the decreased information asymmetry, possible losses of liquidity suppliers 

will be reduced, and order flow toxicity will be lower.  Based on the empirical findings of Brogaard 

et al., we argue that by increasing price informational efficiency, HFTs reduce informational 

asymmetry between informed traders and liquidity providers and become negatively related to 

order flow toxicity.  

Hypothesis 1: High frequency trading is negatively associated with order flow toxicity in equity 

markets. 

 

3.2 Predicting HFTs’ liquidity provision changes 

In the finance literature, extreme VPIN values are used as signals for important liquidity 

events. Easley et al. (2012; 2011), Bethel et al. (2012) and Wu et al. (2013) document that VPIN 

gives strong signals ahead of the Flash Crash. Wu et al. (2014) find that VPIN can detect some 

events that resulted in liquidity issues in the market, such as the Countrywide Financial liquidity 

crunch (08/2007), a FOMC weak outlook warning (01/2008), a significant drop in the DOW Jones 

index (09/2008), and the U.S.’s credit rating downgrade (08/2011). Also, Easley et al. (2012) 

document high levels of VPIN around the Fukushima nuclear crisis on March 14, 2011. Abad and 

Yague (2012) find that VPIN can proxy for adverse selection risk in Spanish financial markets.  

As empirical findings suggest that VPIN can signal important liquidity events, we ask a 

different question: can VPIN signal the periods in which liquidity suppliers are changing their 

liquidity supply and demand? Identifying when liquidity suppliers increase or decrease their 

market participation is important. If we can detect those periods, regulators and market participants 

can take precautions and prevent sudden high frequency trading related liquidity crises. To this 
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end, we test whether high levels of VPIN can detect changes in HFTs’ liquidity supply and 

demand.  

Hypothesis 2: High levels of VPIN can signal changes in HFTs’ liquidity supply and demand. 

3.3 HFTs’ impact on stock price variance  

Cartea and Penalva’s (2012) and Jarrow and Protter’s (2012) theoretical models predict 

that HFTs can increase stock price volatility, yet, empirical findings for HFTs’ impact on stock 

price volatility are mixed. Brogaard (2010) finds that HFTs may reduce price volatility. On the 

other hand, Kirilenko et al. (2012) find that HFTs lead to an increase in volatility during the Flash 

Crash. Additionally, Zhang (2010) finds that HFTs may increase stock price volatility. 

We approach the relation between HFTs and stock price variance with a volume clock 

approach rather than a time clock approach. A volume time clock approach to HFTs and stock 

price variance relation can be more suitable than a clock time approach, particularly as Clark’s 

(1973) and Ane and Geman’s (2000) findings support the idea that trade time rather than clock 

time is more appropriate in financial markets. Moreover, Easley et al. (2012) show that the 

distribution of price changes calculated in volume time is closer to a normal distribution and is less 

heteroscedastic than price changes calculated in clock time. In addition, volume time reduces the 

impact of volatility clustering. 

Our second contribution is that we examine HFTs and stock price variance relation during 

normal and high order flow toxicity periods. Kirilenko et al. (2012) find that HFTs increased stock 

price variance during a single high order flow toxicity event; the Flash Crash. Different than 

Kirilenko et al., we examine HFTs’ impact on stock price variance during all high toxicity periods 

throughout the year 2009. Thus, we provide a comprehensive analysis of HFTs’ impact on stock 

price variance during normal and high toxicity periods. Since theoretical studies predict a positive 
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relation between HFTs and stock price variance, and empirical findings are mixed, we test a null 

hypothesis regarding HFTs and stock price volatility relation.  

Hypothesis 3: HFTs’ liquidity demand and supply do not affect stock price variance during 

normal and high order flow toxicity periods. 

 

4. The VPIN metric calculation 

We calculate volume-synchronized probability of informed trading, the VPIN toxicity 

measure, following Easley, Prado, and O'Hara (2012). This methodology is followed by Easley, 

Prado, and O'Hara (2011), Abad and Yague (2012), Bethel et al. (2012), Wu et al. (2013), and Wei 

et al. (2013). VPIN captures the imbalances between buying and selling pressure and is designed 

to capture volume information rather than price information (Easley et al., 2011).  Empirical 

research shows that trade classification algorithms used to calculate VPIN can affect the VPIN 

measure. However, our data identify buy and sell trades, and we use actual trades without any 

classification algorithm. Thus, our measure is free from classification algorithm bias.  

We define VPIN as: 

nV

VV
VPIN

n BS 


 1 
 

Where V  is volume bucket size, n  is the number of buckets, )( BSV  is total sell (buy) 

volume in a given volume bucket ( ). Easley et al. (2012) and Abad and Yegue (2012) show that 

the choice of the number of buckets has little impact on final value of VPIN. Hence, we choose 

most commonly used value (50). We define bucket size as one-fiftieth of the average daily volume. 

Easley et al. (2012) show the choice of bucket size and number of buckets are robust to alternative 

specifications.  
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5.1 Sample overview 

We use the NASDAQ HFT dataset.  This dataset contains trades for 120 stocks. The sample 

includes 40 large cap, 40 medium cap and 40 small cap stocks.  Half of the stocks are listed on 

NASDAQ and the other half are listed on the New York Stock Exchange (NYSE). The 26 high 

frequency trading firms are identified by NASDAQ based on analysis of firms’ trading patterns, 

such as order duration, order to trade ratio, and how frequently net trading in a day crosses zero. 

The data contain following items: Symbol, Date, Time in milliseconds, Shares, Price, a Buy/Sell 

indicator, and Type (HH, HN, NH, NN). 

Symbol is the NASDAQ trading symbol for a stock, and trades are time-stamped to the 

millisecond. Shares indicates the number of shares traded in a given transaction. The Buy/Sell 

indicator identifies if the trade was buyer- or seller-initiated. The Type item indicates liquidity 

demanding and liquidity supplying parties in the transaction; the first participant is demanding 

liquidity and second one is supplying liquidity. Specifically, a trade with high frequency trading 

firms on both sides of the transaction is categorized as HH, a trade with a high frequency trading 

firm initiating the trade and a non-high frequency trader providing liquidity is classified as HN. 

When a non-high frequency trader initiates a trade and a high frequency trading firm provides 

liquidity, this trade termed as an NH trade. An NN trade is one with no high frequency trading 

firms participating.  

We calculate HFTs’ overall participation, liquidity demand, and liquidity supply using 

Type item (HH, HN, NH, NN). Consistent with Brogaard, Hendershott, and Riordan (2014) and 

Carrion (2013) we define: 

HFT_ALL= (HH+HN+NH)/(HH+HN+NH+NN), 
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HFT_DEMAND=(HH+HN)/(HH+HN+NH+NN),       (Eq.1) 

HFT_SUPPLY=(HH+NH)/(HH+HN+NH+NN). 

In addition, using Type item (HH, HN, NH, NN) we define trade type participation 

variables as follows:3   

HH_participation=(HH)/(HH+HN+NH+NN),  

HN_participation=(HN)/(HH+HN+NH+NN),       (Eq.2) 

NH_participation = (NH)/(HH+HN+NH+NN), 

NN_participation = (NN)/(HH+HN+NH+NN).  

Table 1 shows price, market capitalization and volume information of the full sample and 

subsamples by listing exchange and market capitalization. Price, volume, market capitalization 

and exchange listing data are from the Center for Research in Security Prices (CRSP) as of 

December 31, 2009. Volume is calculated as the average number of shares traded per month during 

the year 2009 (in hundred thousands). The average market capitalization of our sample is around 

$18 billion and average stock price is around $34. While NASDAQ-listed stocks’ volume and 

market capitalization are close to those of NYSE-listed stocks, NASDAQ-listed stocks have higher 

prices on average than the NYSE-listed stocks. Large cap stocks’ volume is nearly 16 times larger 

than medium caps’ volume, and 62 times larger than small caps’ volume in our sample.  

{Insert Table 1 here} 

 5.2 Descriptive statistics  

Table 2 reports descriptive statics of full sample and three subsamples by volume. Our 

analysis utilizes all trade data reported by NASDAQ HFT dataset for the year 2009.4 We find that 

                                                           
3These definitions are similar to some definitions of Brogaard (2010). 
4 We winsorize “price” at 0.01 and 99.9 percentiles to eliminate impact of any outliers as in Hendershott, Jones, and 

Menkveld (2011).  
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as volume increases average order flow toxicity decreases. Average order flow toxicity (mean 

VPIN) is 41.78% in overall sample, 23.78% in high volume sample, 40.01% in medium volume 

sample and 61.54 % in low volume sample. Thus, we observe the highest VPIN levels in low 

volume stocks and the lowest VPIN levels in high volume stocks. Similarly, we observe the lowest 

VPIN volatility in the high volume sample, and highest VPIN volatility in the low volume sample. 

The negative relation between volume and order flow toxicity is also observed between volume 

and return volatility. Specifically, the standard deviation of returns is 8.32% in the overall sample, 

2.22% in the high volume sample, 7.18% in the medium volume sample and 16.33% in the low 

volume sample. We also observe that trade size and price are positively related to volume. Overall 

HFT participation, HFT liquidity demand, HFT liquidity supply, HH-participation, and NH-

participation are increasing with volume while NN-participation is decreasing with volume. HN 

participation is highest in medium volume and lowest in low volume stocks. Table 2 Panel C 

results show that the mean differences we discussed so far are statistically significance at 1% level.  

{Insert Table 2 here} 

6.1 HFTs and order flow toxicity 

We examine HFTs’ association with order flow toxicity with the following model:  

 𝑙𝑛 𝑉𝑃𝐼𝑁𝑖,𝜏 = 𝛼𝑖,𝜏 + 𝛽1𝑙𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2𝑙𝑛 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 + 𝛽3𝑙𝑛 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏.  

VPIN method is explained in section 4. “τ” is a volume bucket for a given firm “i”. 

Participation rate refers to HFT all, HH-, HN-, NH-, and NN-participations as in equations 1 and 

2. Trade size is average number of shares traded per trade in a given volume bucket. Price is the 

average stock price in a given volume bucket.  

Consistent with the related literature (e.g., Easley, Engle, O'Hara, and Wu, 2008; Andersen, 

and Bondarenko, 2014a, 2014b), we estimate the regressions using generalized methods of 
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moments, with the weighting matrix calculated according to Newey and West (1987) with 50 lags. 

Thus, our analysis is based on the t-statistics that reflect heteroskedasticity and autocorrelation 

consistent standard errors with 50 lags. In addition, when examining VPIN and HFT participation 

relations (Tables 3 and 4), we normalize all variables with natural log. Our approach is supported 

by empirical evidence that VPIN values may be better described with lognormal distribution (Wu, 

Bethel, Gu, Leinweber, and Ruebel, 2013). Also, consistent with our approach, Easley, de Prado, 

and O'Hara (2012) calculate natural log of VPIN values in their VPIN and volatility analysis 

section.  

Table 3 reports impacts of HFT all, HH-, HN-, NH- and NN-participation on order flow 

toxicity with models 1, 2, 3, 4, and 5 respectively. Model 1 shows that overall HFT activity is 

negatively associated with order flow toxicity. Models 2 and 3 find that HFTs’ trade with each 

other (HH), and HFTs’ liquidity demand from non-HFTs (HN) are negatively associated with 

order flow toxicity. However, when non-HFTs trade with each other (NN) is positively related to 

order flow toxicity (model 5). These findings are statistically significant at 5% or higher levels. In 

addition, we find that trade size is positively associated with order flow toxicity in all models, 

while price is statistically insignificant.  

{Insert Table 3 here} 

Since, trading activities and HFTs’ market participation are heterogeneous across volume 

samples (e.g., Table 2 Panel C), our findings in Table 3 may differ with volume. Thus, we examine 

the impact of volume on HFTs’ relation to order flow toxicity in Table 4. Specifically, in Table 4 

we divide the overall sample into high-, medium- and low-volume subsamples with 40 stocks each. 

Then, we employ the empirical approach of Table 3 in each subsample. In Table 4, the comparison 

of slopes panel, we test statistical significance of HFT participation’s slope differences across 
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subsamples. In the comparison of slopes tests, as in Ahn, Hwang, and Kim (2010), we follow the 

methods suggested by Paternoster, Brame, Mazerolle, and Piquero (1998).  

Table 4 Panel A shows that overall HFT participation is negatively associated with order 

flow toxicity across all subvolume samples. Comparison of slopes shows that the negative impact 

is more pronounced in the high and medium volume samples compared to the low volume sample. 

Panel B and C find that when HFTs’ trades with each other (HH), and HFTs’ liquidity demand 

from non-HFTs (HN) are negatively related to order flow toxicity in high and medium volume 

samples. Comparisons of slopes show that negative impact of HH-participation is greater in high 

volume sample compared to medium and low volume samples. Table 4 Panel E shows that when 

non-HFTs’ trades with each other (NN), we find a positive relation to order flow toxicity across 

all sub-volume samples. Comparison of slopes shows that the positive impact is more pronounced 

in the high and medium volume samples compared to the low volume sample. In all models of 

Table 4 trade size is positively associated with order flow toxicity.  

Overall, and consistent with the findings in Table 3, our findings in Table 4 show that even 

after controlling for volume differences across stocks, HFTs are negatively related to order flow 

toxicity. Moreover, order flow toxicity is a positively related to non-HFTs’ trading with other non-

HFTs and trade size. 

{Insert Table 4 here} 

The findings in Table 3 and Table 4 are consistent with our first hypothesis that HFTs are 

negatively associated with order flow toxicity. One possible explanation of this finding is that 

when information asymmetry is high between the liquidity providers and informed traders, losses 

to the liquidity providers will be high and order flow toxicity will increase. Since, HFTs are better 

at observing markets (Hendershott and Riordan, 2013) and increase price efficiency (Brogaard et 
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al., 2014), they reduce the information asymmetry in the markets. With short lived information 

asymmetry, losses to liquidity suppliers decrease and HFTs’ participations become negatively 

related to order flow toxicity.  

  

6.2 Predicting HFTs’ liquidity provision changes 

We examine if VPIN can detect changes in HFTs’ market participations, liquidity supply 

and demand with univariate and multivariate (probit) approaches.  

 

6.2.1 Predicting HFTs’ liquidity provision changes univariate approach 

We start univariate approach by defining VPIN events. When the VPIN level in a volume 

bucket is two standard deviations above the sample’s mean VPIN level, we define that volume 

bucket as a VPIN event bucket (similar to Wu et al., 2013). VPIN event buckets are considered to 

be high toxicity periods. We examine HFTs’ liquidity supply and demand activities in different 

volume bucket windows around and during the VPIN events.  

Below, the volume bucket line represents the way we create the volume bucket windows. 

The first bucket in which VPIN is two standard deviations above the sample mean is considered 

as the start of a VPIN event. The last bucket extreme VPIN observed is considered as the end of 

VPIN event. Prior 10, 5, and 1 windows start at 10, 5, and 1 buckets before the VPIN event starts. 

All Prior event windows end at the beginning of the VPIN event.  

  Prior 10             Prior 5         Prior 1  VPIN EVENT                After 1       After 5            After 10  
  | | |              |      |               |   | |   
  -10                       -5                - 1           0                                     0               1                 5                       10 
 

Mean 0 is the average liquidity supply/demand throughout the entire sample period, 

excluding VPIN event periods and the window itself. Mean 1 is the average liquidity 
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supply/demand in the stated volume bucket window. We calculate the differences between Mean 

0 and Mean 1 in each window, and test for statistical significance of the differences with T-Tests 

and Wilcoxon Two-Sample Tests. In addition, we test whether the distributions of liquidity supply 

and demand in six different windows and during the VPIN event are the same as the distributions 

of liquidity supply and demand during normal times. To this end, we apply the Kolmogorov-

Smirnov test on the liquidity supply and demand distributions. Kolmogorov-Smirnov analysis tests 

if the distribution of a variable is same across different groups, and reports the probability that two 

compared sequences follow same distribution.5  

Table 5-A Panel A presents comparison of HFTs’ liquidity supply around the VPIN events. 

We find that in Prior 10, 5, and 1 windows the differences are positive. Thus, prior to the VPIN 

events HFTs’ liquidity supply is decreasing compared to their liquidity supply during the normal 

times. The greatest decrease is observed during the VPIN events. In after 1, 5, and 10 windows all 

differences are negative, which means HFTs’ liquidity supply is increasing after the VPIN events. 

We apply T-Tests and Wilcoxon Two-Sample tests and find that all differences in Panel A are 

statistically significant at the 1% level. In addition, the results of Kolmogorov-Smirnov test show 

that the distributions of HFTs’ liquidity supply in the prior, during and after VPIN event windows 

are different than those during the normal toxicity periods.  Thus, VPIN is able to predict the 

changes in HFTs’ liquidity supply.  

Table 5-A Panel B reports HFTs’ liquidity demand around and during the VPIN events. 

HFTs’ liquidity demand is decreasing in Prior 10, 5, and 1 windows compared to the liquidity 

demand during the normal periods. The differences are significant at 5% level.6  During the VPIN 

                                                           
5 We discuss the findings of Kolmogorov-Smirnov test, but do not report the results. The findings are available upon 

request.  
6 Exceptions are; After 1 window which is significant at 10% level, and After 5 window which is insignificant.  
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events HFTs’ liquidity demand is lower than their liquidity demand during the normal times. After 

the VPIN events HFTs’ liquidity demand starts to increase. Kolmogorov-Smirnov tests also show 

that the distributions of HFTs’ liquidity demand around and during the VPIN events are different 

than the distributions of HFTs’ liquidity demand during normal times. Thus, univariate findings 

are consistent with our hypothesis that VPIN can detect changes in HFTs’ liquidity supply and 

demand.  

{Insert Table 5-A here} 

 

6.2.2 Predicting HFTs’ liquidity provision changes multivariate (probit) approach 

Table 5-B presents probit analysis in which VPIN events are dependent variables and HFT 

participations, price and trade size are independent variables. The probit regression is: 

  𝑉𝑃𝐼𝑁 𝐸𝑣𝑒𝑛𝑡𝑖,𝜏 = 𝛼𝑖,𝜏 + ∑ 𝛽𝑗
10
𝑗=1 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−𝑗 + ∑ ʎ𝑗

10
𝑗=1 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−𝑗 + ∑ ᴪ𝑗

10
𝑗=1 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−𝑗 + ɛ𝑖,𝜏.  

In the probit analysis, we examine how HFTs’ market participations in the ten prior volume bucket 

is related to VPIN events, while controlling for price and trade size. We follow Wooldridge’s 

(2012) method to calculate sums of coefficients of 10 lags and their standard errors. We cluster 

the standard errors at the firm level and report the robust t-statistics. 

In the Table 5-B Panel A, we use overall sample’s mean and standard deviations of VPIN 

values to calculate VPIN threshold and VPIN events. This examination is practical and uses all 

available information but does allow contemporaneous examination. In the Table 5-B Panel B, 

first, we divide our sample in two subsamples with equal number of volume buckets. Then, we 

calculate VPIN thresholds by using the data from the first sample. We use VPIN thresholds 

calculated from first sample to define VPIN events in the second sample. This approach allows for 
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contemporaneous calculation, because VPIN events in second sample are defined based on 

realized VPIN values from the first sample. 

Table 5-B Panel A-1 shows that overall HFT activity is negatively related to the likelihood 

of VPIN events. We examine HFT activity and VPIN event relation more specifically with HH, 

HN, and NH participations in Panels A-2, A-3, and A-4. These three panels also find a negative 

relation between HFT involved trades and the likelihood of a VPIN event. On the other hand Panel 

A-5 finds non-HFTs trade with each other (NN) is positively related to probability of a VPIN 

event. In all models, price and trade size are positively associated with probability of VPIN events. 

Table 5-B Panel B, contemporaneous examination shows consistent findings with Panel-A. Thus, 

VPIN events defined by using realized VPIN values can be useful to detect HFT activity changes 

in real time.  

{Insert Table 5-B here} 

Tables 5-A and 5-B provide supportive evidence that in addition to predicting important 

toxicity events, VPIN can be used to predict changes in HFTs’ market participation, liquidity 

supply and demand. Market participants and regulators can benefit from this property of VPIN. 

By tracking VPIN in real time; market participants and regulators can predict when high frequency 

liquidity suppliers will drop out the market. Thus, sudden drops in liquidity due to high frequency 

liquidity supplier withdrawals can be foreseen and appropriate protection strategies can be 

implemented.   

 

6.3 HFTs and stock price variance 

We examine the relation between stock price variance and HFTs’ market participation with 

the following model:  
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 𝑆𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖,𝜏 = 𝛼𝑖,𝜏 + 𝛽1𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2 ln 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 + 𝛽3ln 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏 . 

Standard deviation of returns is calculated in each volume bucket ““τ” for a given firm 

“i”. Returns are calculated using prices of consecutive trades. Participation rates are calculated as 

in equations 1 and 2. Controls variables are the natural logarithms of price and trade size. In the 

volatility and HFT participation examinations, we follow Andersen, and Bondarenko, 2014a, 

2014b. We estimate the regressions using generalized methods of moments, with the weighting 

matrix calculated according to Newey and West (1987) with 50 lags. Hence, our analysis is based 

on the t-statistics that reflect heteroskedasticity and autocorrelation consistent standard errors with 

50 lags. 

Table 6 presents the relations between overall HFT-, HH-, HN-, NH- and NN-participation 

and stock price variance in model 1, 2, 3, 4, and 5 respectively. Models 1, 2 and 5 find that overall 

HFT participation, HFTs trades with other HFTs, and non-HFTs trades with other non-HFTs do 

not affect stock return variance in overall sample. Model 3 finds that trades in which HFTs demand 

liquidity from non-HFTs are negatively associated with return volatility. On the other hand, Model 

4 shows that trades in which non-HFTs takes liquidity from HFTs are positively associated with 

stock return volatility. In all models, price is negatively related to stock return variance and trade 

size is statistically insignificant.  

{Insert Table 6 here} 

In Table 7 we examine the impact of HFT participation on stock return variance across 

high-, medium-, and low-volume subsamples. Table 7 Panel A models 1 and 2 find that overall 

HFT participation is negatively associated with stock return volatility in high and medium volume 

samples. However, Panel A model 3 shows that overall HFT participation is positively related to 

stock return volatility in the low volume sample. Comparisons of overall HFTs’ slopes also show 



21 
 

 

that overall HFT impact on volatility in high and medium volume stocks is different than that in 

low volume stocks. Panels B and D present that in high (low) volume sample HH and NH 

participations are negatively (positively) associated with stock return variance. Comparison of 

slopes also support these differences. Panel C finds that trades in which HFT demand liquidity 

from non-HFTs are negatively associated with stock return volatility in high and medium volume 

samples. Panel E shows that trades of non-HFTs are positively associated with stock return 

variance in high and medium volume samples and negatively associated in low volume sample. 

Comparison of non-HFTs’ slopes provide supportive evidence about the statistical significance of 

impact differences.  

{Insert Table 7 here} 

Overall, Tables 6 and 7 provide evidence about the significant role of volume when 

examining impacts of HFTs on stock return volatility. Tables 6 and 7 results show that HFTs’ 

impact on stock return variance is not uniform and varies with volume. HFTs’ market participation 

can reduce stock return volatility in high and medium volume stocks but increase the volatility in 

low volume stocks. At the same time, non-HFTs’ trades with each other can increase stock return 

volatility in high and medium volume samples, and decrease the volatility in low volume stocks. 

Hence, in terms of stock return volatility HFTs are mainly beneficial for high and medium volume 

stocks and can harm low volume stocks.  

 

6.4 HFTs and stock price variance during high toxicity periods 

Table 8 examines HFTs’ impacts on stock price variance during high order flow toxicity 

periods. In this analysis, we follow the same regression model from section 6.3. The main 

difference is that we conduct our analysis only in high toxicity periods. We define high order flow 
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toxicity periods as the volume buckets in which the VPIN level is two standard deviations above 

the sample’s mean VPIN level (similar to Wu et al., 2013). 

Table 8 Panel A model 1 finds that in high volume stocks overall HFT participation is 

negatively associated with stock return volatility even during high toxicity periods. Consistently, 

Panel C model 1 also finds a negative relation between HN participation and stock return volatility 

in high volume sample. On the other hand, Panel E model 1 finds a positive association with non-

HFTs trades with each other and stock return volatility in high volume stocks. For medium and 

low volume stocks the results are mostly insignificant.  

{Insert Table 8 here} 

  Consistent with the findings in Table 7, Table 8 results show that even during the high 

toxicity periods overall HFT participation is negatively related to stock return volatility in high 

volume stocks. While HFTs can be beneficial for high volume stocks during high toxicity periods, 

their impact in medium and low volume samples are insignificant. The differences in results of 

Tables 7 and 8 show that HFTs’ impacts on stock price variance are changing during high order 

flow toxicity periods relative to normal periods. Thus, HFTs relation to stock return volatility is 

not uniform varies with market’s order flow toxicity level.  

 

7. Conclusion  

A considerable amount of research is dedicated to understand the impacts of HFTs on the 

financial markets.  Our study extends the empirical research on HFTs with three contributions. 

First, we examine the relation between high frequency trading and order flow toxicity in equity 

markets, and find a negative relation between high frequency trading and order flow toxicity in 

equity markets. We attribute this to HFTs’ role in information dissemination and price discovery. 
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Second, we study predictability of changes in HFTs’ market participation, liquidity supply and 

demand, and find that VPIN can detect changes in HFTs’ liquidity demand and supply. Market 

participants and regulators can benefit from our finding by tracking the VPIN in real time; changes 

in HFTs’ liquidity provisions can be detected and appropriate protection strategies can be 

implemented. Finally, we find that HFTs’ impacts on stock price variance are not uniform, and 

vary with toxicity levels and stock volume. Overall HFTs participation is mostly beneficial for 

high and medium volume stocks while can increase stock return volatility in low volume stocks.  
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Table 1: Sample stock characteristics  
Sample includes 120 NASDAQ stocks from NASDAQ provided high frequency trading dataset. Sample 
period is from January 2009 to December 2009. Price, volume, market capitalization and exchange listing 
data are from CRSP as of December 31, 2009. Volume (in 100,000’s) is calculated as the average number 
of shares traded per month during 2009.  Market Capitalization (MCAP) is in billions of dollars. 

  
 Full 

sample 
NYSE-listed 

 stocks 
NASDAQ-listed 

stocks 
Large cap 

stocks 
Medium 

cap stocks 
Small cap   

stocks 

N  120 60 60 40 40 40 

Volume  1257.78 1266.26 1249.29 3504.90 212.70 55.72 

Price  34.88 28.94 40.81 56.73 30.12 17.78 

MCAP  17.99 18.26 17.72 51.80 1.75 0.41 
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Table 2: Descriptive statistics 
This table reports descriptive statistics across volume buckets for 120 stocks traded on NASDAQ for the year 2009. VPIN calculation procedure is given in 
section 4 in detail. Ret. Std. Dev. is the standard deviation of returns, where returns calculated as (((pricet / pricet-1)-1)*100). Trade size is the average number 
of shares traded per trade in a given volume bucket. Price is the average stock price in a given volume bucket.  HH-, HN-, NH-, and NN-part. are the participation 
rates which are calculated as (volume of trade type in a given volume bucket divided by total volume, as in eq.2). ‘H’ stands for high frequency trader and ‘N’ 
stands for non-high frequency trader. A trade with high frequency trading firms on both sides of the transaction is categorized as HH, a trade with a high 
frequency trading firm initiating the trade and a non-high frequency trader providing liquidity is classified as HN. When a non-high frequency trader initiates 
a trade and a high frequency trading firm provides liquidity, we term this trade as NH trade. An NN trade is one where there are no high frequency trading 
firms participating. HFT all, HFT demand and HFT supply are calculated following eq.1. Panel C reports if the differences in means are statistically significant.  
***, ** and * represent significance at 1%, 5%, and 10% level, respectively. 

Panel A:  Overall sample Panel A: High Volume sample 

Variable Mean Std. Dev 5th Pctl Median 95th Pctl Variable Mean Std. Dev 5th Pctl Median 95th Pctl 

VPIN 0.4178 0.1908 0.1761 0.3885 0.7744 VPIN 0.2378 0.0739 0.1497 0.2253 0.3657 

Ret. Std. Dev.  0.0832 0.1464 0.0057 0.0382 0.2949 Ret. Std. Dev.  0.0222 0.0327 0.0071 0.0157 0.0522 

Trade size 160.96 397.35 56.76 111.50 370.68 Trade size 196.45 578.90 90.29 142.86 400.19 

Price 30.24 42.88 5.04 20.73 69.12 Price 43.31 64.25 7.88 28.22 95.19 

HFT all 0.4938 0.2909 0.0000 0.5386 0.8988 HFT all 0.6890 0.1675 0.3662 0.7216 0.9004 

HFT demand 0.3306 0.2463 0.0000 0.3247 0.7516 HFT demand 0.4268 0.1681 0.1453 0.4280 0.7021 

HFT supply 0.2481 0.2243 0.0000 0.2003 0.6535 HFT supply 0.4262 0.1754 0.1268 0.4343 0.6986 

HH part. 0.0848 0.1097 0.0000 0.0406 0.3036 HH part. 0.1640 0.1026 0.0227 0.1493 0.3545 

HN part. 0.2458 0.2065 0.0000 0.2194 0.6330 HN part. 0.2628 0.1238 0.0754 0.2533 0.4805 

NH part. 0.1633 0.1638 0.0000 0.1275 0.4684 NH part. 0.2622 0.1329 0.0715 0.2470 0.5010 

NN part. 0.5062 0.2909 0.1012 0.4614 1.0000 NN part. 0.3110 0.1675 0.0996 0.2784 0.6338 

Panel B: Medium volume sample  Panel B: Low volume sample 

Variable Mean Std. Dev 5th Pctl Median 95th Pctl Variable Mean Std. Dev 5th Pctl Median 95th Pctl 

VPIN 0.4001 0.1112 0.2445 0.3876 0.5981 VPIN 0.6154 0.1400 0.4024 0.6067 0.8586 
Ret. Std. Dev.  0.0718 0.0915 0.0114 0.0508 0.1865 Ret. Std. Dev.  0.1633 0.2183 0.0000 0.1005 0.5279 
Trade size 152.33 326.67 64.25 105.28 271.41 Trade size 134.11 172.50 41.51 91.42 393.76 
Price 27.70 27.89 5.53 21.84 59.34 Price 19.72 17.93 3.22 12.89 59.21 
HFT all 0.4751 0.2519 0.0495 0.4814 0.8793 HFT all 0.3174 0.3045 0.0000 0.2487 0.9342 
HFT demand 0.3386 0.2353 0.0000 0.3151 0.7603 HFT demand 0.2263 0.2796 0.0000 0.1056 0.8337 

HFT supply 0.2009 0.1822 0.0000 0.1550 0.5665 HFT supply 0.1171 0.1893 0.0000 0.0000 0.5233 
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HH part. 0.0643 0.0925 0.0000 0.0301 0.2540 HH part. 0.0260 0.0831 0.0000 0.0000 0.1744 
HN part. 0.2743 0.2038 0.0000 0.2461 0.6512 HN part. 0.2003 0.2606 0.0000 0.0834 0.7708 
NH part. 0.1365 0.1393 0.0000 0.1000 0.4110 NH part. 0.0911 0.1663 0.0000 0.0000 0.4370 
NN part. 0.5249 0.2519 0.1207 0.5186 0.9505 NN part. 0.6826 0.3045 0.0658 0.7513 1.0000 

Panel C: Diff. in Means High Vol. vs. Med. Vol. High Vol. vs. Low Vol. Med Vol. vs. Low Vol.           

VPIN -0.1623*** -0.3776*** -0.2153***           
Ret. Std. Dev.  -0.0496*** -0.1411*** -0.0915***           
Trade size 44.1262*** 62.3397*** 18.2136***           
Price 15.6117*** 23.5877*** 7.9759***           
HFT all 0.2139*** 0.3716*** 0.1577***           
HFT demand 0.0882*** 0.2005*** 0.1123***           
HFT supply 0.2253*** 0.3091*** 0.0837***           
HH part. 0.0996*** 0.1379*** 0.0383***           
HN part. -0.0114*** 0.0625*** 0.074***           
NH part. 0.1257*** 0.1712*** 0.0454***           
NN part. -0.2139*** -0.3716*** -0.1577***           
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Table 3: HFTs’ impact on order flow toxicity regression results 
This table presents the results from estimating the regression given by 𝑛 𝑉𝑃𝐼𝑁𝑖,𝜏 = 𝛼𝑖,𝜏 + 𝛽1𝑙𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2𝑙𝑛 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 +

𝛽3𝑙𝑛 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏 . We estimate the regressions using generalized methods of moments, with the weighting matrix calculated according to Newey and 

West (1987) with 50 lags. The t-statistics in parentheses reflect heteroskedasticity and autocorrelation consistent standard errors with 50 lags. The dependent 
variable VPIN is calculated from NASDAQ provided HFT data from Jan 2009 to Dec. 2009. “τ” is a volume bucket for a given firm “i”.  HFT all is calculated 
following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade size is average number of shares traded per trade in a given volume 
bucket. Price is the average stock price in a given volume bucket.  Sample size (N) is 120.  ***, ** and * represent significance at 1%, 5%, and 10% level, 
respectively. 

Models Model 1 Model 2 Model 3 Model 4 Model 5 

HFT ALL -0.0315 
(-3.03)*** 

    

HH-part.  -0.0130 
(-2.43)** 

   

HN-part.   -0.0158 
(-2.63)** 

  

NH-part.    0.0067 
(1.10) 

 

NN-part.     0.0321 
(3.57)*** 

Trade size 0.0954 
(5.96)*** 

0.0976 
(4.69)*** 

0.1025 
(6.46)*** 

0.1121 
(6.71)*** 

0.0925 
(6.72)*** 

Price -0.0417 
(-0.70) 

-0.0364 
(-0.52) 

-0.0408 
(-0.67) 

-0.0363 
(-0.57) 

-0.0417 
(-0.72) 

Intercept -1.3669 
(-6.53)*** 

-1.4143 
(-5.78)*** 

-1.4083 
(-6.63)*** 

-1.4436 
(-6.52)*** 

-1.2979 
(-6.39)*** 

R-square 0.1050 0.0923 0.0996 0.0953 0.1217 
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Table 4: HFTs’ impact on order flow toxicity across volume subsamples regression results  
This table presents the results from estimating the regression given by 𝑙𝑛 𝑉𝑃𝐼𝑁𝑖,𝜏 = 𝛼𝑖,𝜏 +

𝛽1𝑙𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2𝑙𝑛 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 + 𝛽3𝑙𝑛 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏. We estimate the 

regressions using generalized methods of moments, with the weighting matrix calculated according to 
Newey and West (1987) with 50 lags. The t-statistics in parentheses reflect heteroskedasticity and 
autocorrelation consistent standard errors with 50 lags. The dependent variable VPIN is calculated from 
NASDAQ provided HFT data from Jan 2009 to Dec. 2009. “τ” is a volume bucket for a given firm “i”.  HFT 
all is calculated following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade size 
is average number of shares traded per trade in a given volume bucket. Price is the average stock price 
in a given volume bucket. We compare slope differences following Paternoster, Brame, Mazerolle, and 
Piquero (1998). Each volume sample consists of 40 stocks.  ***, ** and * represent significance at 1%, 
5%, and 10% level, respectively. 

Panel A High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HFT all -0.0544 
(-2.93)*** 

-0.0319 
(-3.65)*** 

-0.0081  
(-2.09)** 

-0.0225  
(-1.09) 

-0.0463  
(-2.44)** 

-0.0239 
 (-2.50)** 

Trade size 0.1159 
(5.22)*** 

0.10369 
(6.46)*** 

0.0666 
(6.81)*** 

      

Price -0.0304 
(-0.45) 

-0.0312 
(-0.52) 

-0.0633  
(-1.27) 

      

Intercept 1.9990 
(-7.55)*** 

-1.4332 
(-6.81)*** 

-0.6685  
(-4.39)*** 

      

 R-square 0.1064 0.1245 0.0841       

Panel B High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HH-part. -0.0296 
(-4.01)*** 

-0.00826  
(-1.96)* 

-0.0010 
(-0.23) 

-0.0214 
 (-2.51)** 

-0.0286  
(-3.32)*** 

-0.0072  
(-1.19) 

Trade size 0.1146 
(5.03)*** 

0.12043 
(5.61)*** 

0.0576 
(3.17)*** 

      

Price -0.0229 
(-0.33) 

-0.0204  
(-0.29) 

-0.0659  
(-0.93) 

      

Intercept -2.0531 
(-7.81)*** 

-1.5491 
 (-6.27)*** 

-0.6404  
(-2.86)*** 

      

R-square 0.1086 0.1047 0.0636       

Panel C High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HN-part. -0.0232 
(-2.55)** 

-0.0202 
 (-3.65)*** 

-0.0041 
 (-1.20) 

-0.0029 
 (-0.27) 

-0.0191 
 (-1.97)* 

-0.0161 
 (-2.48)** 

Trade size 0.1292 
(6.44)*** 

0.1104 
(6.67)*** 

0.0679  
(6.20)*** 

      

Price -0.0229 
(-0.33) 

-0.0355  
(-0.58) 

-0.0641 
(-1.20) 

      

Intercept -2.1002 
(-8.09)*** 

-1.4561 
 (-6.77)*** 

-0.6685  
(-4.11)*** 

      

R-square 0.1019 0.1153 0.0817       

Panel D High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NH-part. 0.01755 
(1.66) 

0.0025 
 (0.52) 

0.0002  
(0.05) 

0.0150 
(1.30) 

0.0174 
(1.58) 

0.0024  
(0.41) 

Trade size 0.1492 
(7.20)*** 

0.1234 
(7.06)*** 

0.0636  
(5.35)*** 
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Price -0.0241 
(-0.35) 

-0.0266 
 (-0.42) 

-0.0581  
(-1.01) 

      

Intercept -2.1398 
(-8.19)*** 

-1.5149  
(-6.76)*** 

-0.6759 
(-3.77)*** 

      

R-square 0.1032 0.1136 0.0690       

Panel E High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NN-part. 0.0460 
(4.28)*** 

0.0352 
(3.66)*** 

0.0149  
(2.27)** 

0.0108 
(0.74) 

0.0311 
(2.46)** 

0.0203 
(1.74)* 

Trade size 0.1117 
(5.56)*** 

0.0969 
(7.40)*** 

0.0690  
(8.49)*** 

      

Price -0.0355 
(-0.52) 

-0.0284  
(-0.47) 

-0.0611  
(-1.32) 

      

Intercept -1.8756 
(-7.11)*** 

-1.3571  
(-6.65)*** 

-0.6611 
 (-4.69)*** 

      

R-square 0.1133 0.1368 0.1149       
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Table 5-A: Predicting HFTs’ liquidity supply and demand changes univariate analysis 
When VPIN level in a volume bucket is two standard deviations above the sample’s mean VPIN level, we 
define that volume bucket as a VPIN event bucket (similar to Wu et al., 2013). VPIN event buckets are 
considered to be high toxicity periods. The first bucket VPIN is two standard deviations above the sample 
mean is considered as start of VPIN event. The last bucket extreme VPIN observed is considered as the 
end of VPIN event. Prior 10, 5, and 1 windows start at 10, 5, and 1 buckets before the VPIN event starts. 
All prior event windows end at the beginning of the VPIN event. After 1, 5, and 10 windows start at the 
end of the VPIN event and lasts for 1, 5, or 10 buckets, respectively.  
Prior 10             Prior 5                        Prior 1                       VPIN EVENT                  After 1                        After 5                                    After 10 

|  | |               |                   |                    |                                    |                                              |  
-10          -5                                  - 1                                  0                           0                     1                                  5                                             10 

Mean 0 is the average liquidity supply/demand throughout the entire sample period, excluding VPIN 
event periods and the window itself. Mean 1 is the average liquidity supply/demand in the stated volume 
bucket window. We calculate the differences between Mean 0 and Mean 1 in each window, and test 
statistical significance of differences with T-Tests and Wilcoxon Two-Sample Tests. 

Panel A: HFT supply 

  Prior 10 Prior 5 Prior 1 During event After 1  After 5 After 10 

Mean 0 0.2497 0.2496 0.2494 0.2494 0.2493 0.2492 0.2492 

Mean 1 0.2230 0.2241 0.2376 0.2144 0.2813 0.2706 0.2675 

Difference 0.0267 0.0255 0.0118 0.0349 -0.0320 -0.0214 -0.0183 

Panel B: HFT Demand 

  Prior 10 Prior 5 Prior 1 During event After 1  After 5 After 10 

Mean 0 0.3336 0.3333 0.3329 0.3328 0.3328 0.3328 0.3329 

Mean 1 0.2680 0.2700 0.2901 0.2730 0.3406 0.3330 0.3282 

Difference 0.0656 0.0633 0.0429 0.0598 -0.0078 -0.0002 0.0047 
 

 *All differences are statistically significant at 5% level. Except HFT demand in After 1 window which is 
significant at 10% level, and After 5 window which is insignificant. 
**Wilcoxon Two-Sample Tests also produce consistent results and available upon request. 
***Kolmogorov-Smirnov test statistics also support that distributions of liquidity supply and demand 
during event windows are different than the distributions during normal times. Results are available upon 
request.  
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Table 5-B: Predicting HFTs’ liquidity supply and demand changes probit analysis 
This table presents the results from estimating probit regression given by  𝑉𝑃𝐼𝑁 𝐸𝑣𝑒𝑛𝑡𝑖,𝜏 = 𝛼𝑖,𝜏 +
∑ 𝛽𝑗

10
𝑗=1 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−𝑗 + ∑ ʎ𝑗

10
𝑗=1 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−𝑗 + ∑ ᴪ𝑗

10
𝑗=1 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−𝑗 + ɛ𝑖,𝜏. We define VPIN 

threshold (similar to Wu et al., 2013) as mean VPIN plus two standard deviations of VPIN. When VPIN 
level in a volume bucket is above VPIN threshold, we define that volume bucket as a VPIN event bucket 
(similar to Wu et al., 2013). VPIN event buckets are considered to be high toxicity periods. In Panel A, we 
calculate VPIN thresholds using VPIN values over whole sample period.  To allow on the fly examination, 
in Panel B, we divide our sample into two subsamples, which consist of equal number of volume buckets. 
Then, we use realized VPIN values of 1st subsample to calculate VPIN thresholds for the 2nd subsample. 
HFT all is calculated following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade 
size is average number of shares traded per trade in a given volume bucket. Price is the average stock 
price in a given volume bucket. Sample size (N) is 120. We employ ten lags in each variable and report 
summation of the coefficients. We calculate t-statistics of summations based on robust standard errors 
that are clustered at firm level. ***, ** and * represent significance at 1%, 5%, and 10% level, respectively. 

Panel A Overall sample Panel B On the fly examination 

Panel A-1 Coeff Robust t-stat Panel B-1 Coeff Robust t-stat 

∑ 𝐻𝐹𝑇 𝑎𝑙𝑙10
1 l -1.0418 (-10.18)*** ∑ 𝐻𝐹𝑇 𝑎𝑙𝑙10

1 l -0.9175 (-3.82)*** 
∑ 𝑃𝑟𝑖𝑐𝑒10

1 l 0.2589 (11.49)*** ∑ 𝑃𝑟𝑖𝑐𝑒10
1 l 0.1714 (2.38)** 

∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10
1 l 0.8873 (18.06)*** ∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10

1 l 0.8753 (10.55)*** 
Intercept -6.4735 (-24.98)*** Intercept -6.0009 (-12.05)*** 

Pseudo R2        0.1269  Pseudo R2        0.1162  

Panel A-2 Coeff Robust t-stat Panel B-2 Coeff Robust t-stat 

∑ 𝐻𝐻 𝑃𝑎𝑟𝑡.10
1 l -3.4617 (-10.63)*** ∑ 𝐻𝐻 𝑃𝑎𝑟𝑡.10

1 l -2.7907 (-3.94)*** 
∑ 𝑃𝑟𝑖𝑐𝑒10

1 l 0.2435 (10.34)*** ∑ 𝑃𝑟𝑖𝑐𝑒10
1 l 0.1601 (2.35)** 

∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10
1 l 0.9441 (19.26)*** ∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10

1 l 0.9140 (10.95)*** 
Intercept -6.9362 (-27.47)*** Intercept -6.3601 (-12.59)*** 

Pseudo R2        0.1317  Pseudo R2        0.1178  

Panel A-3 Coeff Robust t-stat Panel B-3 Coeff Robust t-stat 

∑ 𝐻𝑁 𝑃𝑎𝑟𝑡.10
1 l -0.5617 (-2.20)** ∑ 𝐻𝑁 𝑃𝑎𝑟𝑡.10

1 l -1.3303 (-4.09)*** 
∑ 𝑃𝑟𝑖𝑐𝑒10

1 l 0.1825 (7.14)*** ∑ 𝑃𝑟𝑖𝑐𝑒10
1 l 0.1570 (2.17)** 

∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10
1 l 0.7821 (10.62)*** ∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10

1 l 0.7496 (7.86)*** 
Intercept -6.0886 (-15.30)*** Intercept -5.4966 (-9.96)*** 

Pseudo R2        0.1001  Pseudo R2        0.1043  

Panel A-4 Coeff Robust t-stat Panel B-4 Coeff Robust t-stat 

∑ 𝑁𝐻 𝑃𝑎𝑟𝑡.10
1 l -1.6346 (-8.04)*** ∑ 𝑁𝐻 𝑃𝑎𝑟𝑡.10

1 l -1.0221 (-2.23)** 
∑ 𝑃𝑟𝑖𝑐𝑒10

1 l 0.1813 (7.83)*** ∑ 𝑃𝑟𝑖𝑐𝑒10
1 l 0.0961 (1.42) 

∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10
1 l 0.9473 (17.55)*** ∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10

1 l 0.8710 (9.57)*** 
Intercept -6.7685 (-24.75)*** Intercept -5.9997 (-11.04)*** 

Pseudo R2        0.1186  Pseudo R2        0.1016  

Panel A-5 Coeff Robust t-stat Panel B-5 Coeff Robust t-stat 

∑ 𝑁𝑁 𝑃𝑎𝑟𝑡.10
1 l 1.0418 (10.18)*** ∑ 𝑁𝑁 𝑃𝑎𝑟𝑡.10

1 l 0.9175 (3.82)*** 
∑ 𝑃𝑟𝑖𝑐𝑒10

1 l 0.2589 (11.49)*** ∑ 𝑃𝑟𝑖𝑐𝑒10
1 l 0.1714 (2.38)** 

∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10
1 l 0.8873 (18.06)*** ∑ 𝑇𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒10

1 l 0.8753 (10.55)*** 
Intercept -7.5153 (-30.30)*** Intercept -6.9183 (-12.22)*** 

Pseudo R2        0.1269  Pseudo R2        0.1162  
We also conduct the same analyses for HFT demand and HFT supply, and find negative relations to the 

VPIN events.  
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Table 6: HFTs’ impact on stock price variance regression results 
This table presents the results from estimating the regressions given by 𝑆𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖,𝜏 = 𝛼𝑖,𝜏 + 𝛽1𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2 ln 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 +

𝛽3ln 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏 . We estimate the regressions using generalized methods of moments, with the weighting matrix calculated according to Newey and 

West (1987) with 50 lags. The t-statistics in parentheses reflect heteroskedasticity and autocorrelation consistent standard errors with 50 lags. The dependent 
variable Standard deviation of returns is calculated from NASDAQ provided HFT data from Jan 2009 to Dec. 2009. “τ” is a volume bucket for a given firm “i”. 
Standard deviation of returns is calculated in each volume bucket ““τ” for a given firm “i”. Returns are calculated using prices of consecutive trades. HFT all is 
calculated following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade size is average number of shares traded per trade in a given 
volume bucket. Price is the average stock price in a given volume bucket. Sample size (N) is 120. ***, ** and * represent significance at 1%, 5%, and 10% level, 
respectively. 

Models Model 1 Model 2 Model 3 Model 4 Model 5 

HFT ALL -0.0070 
(-1.09) 

    

HH-part.  0.0145 
(0.86) 

   

HN-part.   -0.0123 
(-1.81)* 

  

NH-part.    0.0202 
(1.96)* 

 

NN-part.     0.0070 
(1.09) 

Trade size 0.0013 
(0.34) 

0.0031 
(0.77) 

0.0026 
(0.66) 

0.0036 
(0.36) 

0.0013 
(0.34) 

Price -0.0718 
(-6.59)*** 

-0.0717 
(-6.59)*** 

-0.0719 
(-6.53)*** 

-0.0735 
(-6.72)*** 

-0.0718 
(-6.59)*** 

Intercept 0.2760 
(7.27)*** 

0.2608 
(6.85)*** 

0.2669 
(6.98)*** 

0.2628 
(6.92)*** 

0.2689 
(7.10)*** 

R-square 0.06760 0.0617 0.0639 0.0648 0.0676 
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Table 7: HFTs’ impact on stock price variance across volume subsamples regression results 
This table presents the results from estimating the regressions given by 𝑆𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖,𝜏 = 𝛼𝑖,𝜏 +

𝛽1𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2 ln 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 + 𝛽3ln 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏 . We estimate the regressions using 

generalized methods of moments, with the weighting matrix calculated according to Newey and West (1987) with 
50 lags. The t-statistics in parentheses reflect heteroskedasticity and autocorrelation consistent standard errors 
with 50 lags. The dependent variable Standard deviation of returns is calculated from NASDAQ provided HFT data 
from Jan 2009 to Dec. 2009. “τ” is a volume bucket for a given firm “i”. Standard deviation of returns is calculated 
in each volume bucket ““τ” for a given firm “i”. Returns are calculated using prices of consecutive trades. HFT all 
is calculated following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade size is average 
number of shares traded per trade in a given volume bucket. Price is the average stock price in a given volume 
bucket. We compare slope differences following Paternoster, Brame, Mazerolle, and Piquero (1998). Each volume 
sample consists of 40 stocks.  ***, ** and * represent significance at 1%, 5%, and 10% level, respectively. 

Panel A High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HFT all -0.0242 
(-6.08)*** 

-0.0139 
(-2.57)** 

0.0171 
(1.73)* 

-0.0102 
(-1.52) 

-0.0413 
(-3.86)*** 

-0.0311 
 (-2.75)*** 

Trade size 0.0095 
(4.60)*** 

0.0059  
(1.43) 

-0.0114 
(-2.10)** 

      

Price -0.0182 
(-7.06)*** 

-0.0616 
(-7.44)*** 

-0.1353  
(-6.21)*** 

      

Intercept 0.0461 
(3.27)*** 

0.2288 
(7.04)*** 

0.5513  
(8.21)*** 

      

 R-square 0.0973 0.0499 0.0556       

Panel B High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HH-part. -0.0142 
(-3.97)*** 

-0.0064 
(-0.46) 

0.0641 
(1.97)* 

-0.0078 
 (-0.54) 

-0.01784 
(-2.39)** 

-0.0706 
(-1.99)** 

Trade size 0.0136 
(5.80)*** 

0.0075 
(1.80)* 

-0.0119 
(-2.20)** 

      

Price -0.0175 
(-6.71)*** 

-0.0619  
(-7.50)*** 

-0.1358  
(-6.24)*** 

      

Intercept 0.0070 
(0.48) 

0.2154 
 (6.62)*** 

0.5599 
(8.36)*** 

      

R-square 0.0820 0.0480 0.0553       

Panel C High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HN-part. -0.0135 
(-4.00)*** 

-0.0164 
 (-2.89)*** 

-0.0069 
 (-0.61) 

0.0029 
 (0.44) 

-0.0065 
 (-0.55) 

-0.0095 
 (-0.74) 

Trade size 0.0135 
(5.89)*** 

0.0066 
 (1.62) 

-0.0124  
(-2.29)** 

      

Price -0.0169 
(-6.31)*** 

-0.0630  
(-7.56)*** 

-0.1357 
(-6.17)*** 

      

Intercept 0.0070 
(0.48) 

0.2276 
 (7.02)*** 

0.5662 
(8.37)*** 

      

R-square 0.0863 0.0504 0.0552       

Panel D High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NH-part. -0.0097 
(-2.38)** 

0.0151 
 (1.44) 

0.0055 
(3.37)*** 

-0.0248 
 (-2.21)** 

-0.0648 
(-3.84)*** 

-0.0400 
(-2.06)** 

Trade size 0.0143 
(6.13)*** 

0.0079 
(1.91)* 

-0.0114  
(-2.11)** 
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Price -0.0178 
(-6.81***) 

-0.0638 
 (-7.65)*** 

-0.1387  
(-6.35)*** 

      

Intercept 0.0060 
(0.43) 

0.2190 
(6.74)*** 

0.5633 
(8.36)*** 

      

R-square 0.0861 0.0514 0.0568       

Panel E High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NN-part. 0.0241 
(6.08)*** 

0.0140 
(2.57)** 

-0.0171 
(-1.72)* 

0.0102 
(1.52) 

0.0412 
(3.86)*** 

0.0311 
(2.75)** 

Trade size 0.0095 
(4.60)*** 

0.0059 
 (1.45) 

-0.0114  
(-2.10)** 

      

Price -0.0182 
(-7.06)*** 

-0.0617  
(-7.44)*** 

-0.1353  
(-6.21)*** 

      

Intercept 0.0219 
(1.62) 

0.2148  
(6.61)*** 

0.5703 
 (8.43)*** 

      

R-square 0.0973 0.0499 0.0555       
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Table 8: HFTs’ impact on stock price variance during high toxicity periods regression results 
This table presents the results from estimating the regressions given by 𝑆𝑡𝑑. 𝑑𝑒𝑣. 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛𝑠𝑖,𝜏 = 𝛼𝑖,𝜏 +

𝛽1𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒𝑖,𝜏−1 + 𝛽2 ln 𝑡𝑟𝑎𝑑𝑒 𝑠𝑖𝑧𝑒𝑖,𝜏−1 + 𝛽3ln 𝑝𝑟𝑖𝑐𝑒𝑖,𝜏−1 + ɛ𝑖,𝜏 . We estimate the regressions using 

generalized methods of moments, with the weighting matrix calculated according to Newey and West (1987) with 
30 lags*. The t-statistics in parentheses reflect heteroskedasticity and autocorrelation consistent standard errors 
with 30 lags. The dependent variable Standard deviation of returns is calculated from NASDAQ provided HFT data 
from Jan 2009 to Dec. 2009. “τ” is a volume bucket for a given firm “i”. Standard deviation of returns is calculated 
in each volume bucket ““τ” for a given firm “i”. Returns are calculated using prices of consecutive trades. HFT all 
is calculated following eq.1. HH-, HN-, NH-, and NN-participations are calculated as in eq.2. Trade size is average 
number of shares traded per trade in a given volume bucket. Price is the average stock price in a given volume 
bucket. We compare slope differences following Paternoster, Brame, Mazerolle, and Piquero (1998). Each volume 
sample consists of 40 stocks.  ***, ** and * represent significance at 1%, 5%, and 10% level, respectively. 

Panel A High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HFT all -0.0240 
(-2.30)** 

0.0036 
(0.19) 

0.0441 
(1.41) 

-0.0276 
(-1.30) 

-0.0680 
(-2.07)** 

-0.0404 
 (-1.11) 

Trade size 0.0068 
(1.72)* 

0.0072  
(0.85) 

-0.0092 
(-0.62) 

      

Price -0.0170 
(-1.73)* 

-0.0514 
(-1.41) 

-0.0804  
(-1.21) 

      

Intercept 0.0536 
(1.26) 

0.1894 
(1.68)* 

0.3713  
(1.86)* 

      

 R-square 0.1037 0.0548 0.0511       

Panel B High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HH-part. -0.0125 
(-0.97) 

0.0489 
(0.83) 

0.1621 
(1.63) 

-0.0614 
 (-1.02) 

-0.1746 
(-1.74)* 

-0.1132 
(-0.98) 

Trade size 0.0114 
(2.57)** 

0.0076 
(0.90) 

-0.0101 
(-0.68) 

      

Price -0.0163 
(-1.60) 

-0.0521 
(-1.42) 

-0.0816  
(-1.22) 

      

Intercept 0.0120 
(0.29) 

0.1881 
 (1.68)* 

0.3863 
(1.93)* 

      

R-square 0.0823 0.0534 0.0516       

Panel C High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

HN-part. -0.0209 
(-2.21)** 

-0.0073 
 (-0.37) 

0.0113 
 (0.30) 

-0.0136 
 (-0.62) 

-0.0322 
 (-0.84) 

-0.0186 
 (-0.44) 

Trade size 0.0109 
(2.55)** 

0.0066 
(0.79) 

-0.0112  
(-0.76) 

      

Price -0.0161 
(-1.57) 

-0.0520  
(-1.41) 

-0.0825 
(-1.22) 

      

Intercept 0.0175 
(0.43) 

0.1963 
 (1.74)* 

0.3973 
(1.95)* 

      

R-square 0.0876 0.0544 0.0468       

Panel D High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NH-part. -0.0095 
(-0.92) 

0.0414 
 (1.12) 

0.1148 
(1.94)* 

-0.0509 
 (-1.33) 

-0.1244 
(-2.07)** 

-0.0734 
(-1.05) 

Trade size 0.0115 
(2.68)** 

0.0080  
(0.35) 

-0.0095  
(-0.65) 
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Price -0.0168 
(-1.65) 

-0.0535 
 (-1.46) 

-0.0821  
(-1.27) 

      

Intercept 0.0153 
(0.38) 

0.1892 
(1.70)* 

0.3810 
(1.96)* 

      

R-square 0.0868 0.0589 0.0583       

Panel E High vol. Med vol.   Low vol.  Comparison of slopes 

Models Model 1 Model 2 Model 3 High vs Med High vs Low Med vs Low 

NN-part. 0.0239 
(2.30)** 

-0.0036 
(-0.19) 

-0.0441 
(-1.41) 

0.0276 
(1.30) 

0.0680 
(2.07)** 

0.0404 
(0.27) 

Trade size 0.0068 
(1.72)* 

0.0072  
(0.85) 

-0.0092  
(-0.62) 

      

Price -0.0170 
(-1.73)* 

-0.0514  
(-1.41) 

-0.080 
(-1.21) 

      

Intercept 0.0296 
(0.76) 

0.193  
(1.73)* 

0.4153 
 (2.08)** 

      

R-square 0.1036 0.0548 0.0511       
*The low number of observations in some sub-volumes forced us to use thirty lags.  

 

 

 

 


